Transition Metal Complexes with Sulfur Ligands, Part 119^[♦]

Synthesis of Water Soluble Fe and Ru Complexes with Novel Multidentate Thioether Thiolate Ligands Containing Carboxylate Substituents

Dieter Sellmann*, Thomas Becker, and Falk Knoch

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstraße 1, D-91058 Erlangen, Germany

Telefax: (internat.) +49(0)9131/857367

E-mail: sellmann@anorganik.chemie.uni-erlangen.de

Received January 12, 1996

Key Words: Iron and ruthenium complexes / Water soluble complexes / Sulfur ligands / X-ray structure analyses

In search of water soluble transition metal complexes with sulfur dominated coordination spheres that model key reactions of nitrogenases, the benzenedithiol derivatives 'CO₂H-S₂'-H₂ (1) and 'CO₂Me-S₂'-H₂ (2) were synthesized as precursors for multidentate sulfur ligands. The template alkylation of 2 by C₂H₄Br₂ at [Fe(CO)₂] fragments yielded a mixture of two diastereomeric C_2 symmetrical [Fe(CO)₂('CO₂Me-S₄')] complexes (4a and 4b), which were separated by crystallization. The hydrolysis of the mixture of the diastereomers 4a and 4b led to the isomerically pure tetradentate thioether thiol ligand 'CO₂Me-S₄'-H₂ (5) proving the regioselectivity of the template alkylation of the asymmetrical dithiol 2. The C_1 symmetrical [Fe('CO₂Me-S₂')₂]²⁻ anion is an intermediate of

the template alkylation and was isolated as $(AsPh_4)_2[Fe-(CO_2Me-S_2')_2]$ (11). 4a, 5 and 11 were characterized by X-ray structural analysis. Saponification of the methyl ester groups of 5 yielded 'CO₂H-S₄'-H₂ (7). Treatment of 7 with $FeCl_2 \cdot 4 H_2O$ in the presence of CO and LiOMe gave a mixture of two C_2 symmetrical and water soluble diastereomers of $Li_2[Fe(CO)_2('CO_2-S_4')]$ (8). Upon treatment with $[RuCl_2(PPh_3)_3]$, 7 yielded isomerically pure $[Ru(PPh_3)_2-('CO_2H-S_4')]$ (9). 9 also exhibits C_2 symmetry and could be reversibly deprotonated to form the water soluble complex $K_2[Ru(PPh_3)_2('CO_2-S_4')]$ (10). Treatment of $(NBu_4)_2('CO_2Me-S_2')$ with " $Ru(NO)Cl_3$ " led to isomerically pure $(NBu_4)[Ru-(NO)('CO_2Me-S_2')_2]$ (12).

Introduction

Iron is the prevalent metal in the active sites of Fe/Mo^[1], Fe/V^[2] and Fe/Fe nitrogenases^[2,3]. Numerous investigations^[4] and, in particular, the X-ray structural model for the FeMo cofactor of FeMo nitrogenases^[5] prove that the Fe centers are surrounded predominantly by sulfur donors. In recognition of the fact that structure-function relationships exist which govern the reactions taking place at these active centers, the identity of the donor atoms is of particular importance. We therefore consider iron complexes with sulfur ligands (in particular complexes that bind N₂, N₂H₂, N₂H₄ or NH₃) to be promising functional models of nitrogenase. In previous work we showed that [Fe('N_HS₄')] (A and B) and [Fe(PR₃)('S₄')] (C) molecular fragments containing the multidentate sulfur ligands 'N_HS₄'²⁻ [2,2'-bis(2mercaptophenylthio)diethylamine(2-)]^[6] and 'S₄'²⁻ [1,2bis(2-mercaptophenylthio)ethane(2-)][7] do bind reduction intermediates of N₂ fixation. However, no corresponding complexes containing a dinitrogen ligand have been isolated

The isolated complexes are generally soluble only in organic solvents such as CH₂Cl₂, THF, DMSO or DMF. We are expecting complexes of this type to show different be-

haviour in aqueous media. For example, the hindered dimerization of coordinatively unsaturated fragments may be relevant to their catalytic potential and their ability to coordinate N₂. In order to render our complexes water soluble, we sought ways to introduce hydrophilic substituents into the dimercaptophenylene units of the sulfur ligands. We report here the synthesis of a new tetradentate ligand that contains carboxylic acid functions and is derived from 2,3-dimercaptobenzoic acid. Scheme 1 summarizes the ligands and their abbreviations. 'S₂'-H₂ and 'S₄'-H₂ denote the parent ligands 1,2-benzenedithiol and 1,2-bis(2-mercaptophenylthio)ethane. The addition of 'CO₂H' and 'CO₂Me' is intended to allow an easy description of the various states of deprotonation. These ligands yield complexes of Fe(II) and

^{[\}rightarrow] Part 118: D. Sellmann, H.-J. Kremitzl, F. Knoch, M. Moll, J. Biol. Inorg. Chem., in press.

its group homologue Ru(II) that become water soluble when the carboxylic acid substituents are deprotonated.

Scheme 1. Abbreviations for the ligands

SH
SH
$$CO_2R$$
 CO_2R
 CO_2R
 $R = H$
 $CO_2H-S_2'-H_2$
 $R = Me$
 $CO_2Me-S_2'-H_2$
 CO_2R
 CO_2R

Results

Syntheses of Ligands

Scheme 2 shows the synthesis of ' CO_2H-S_4 '- H_2 (7).

Lithiation of 1,2-benzenedithiol, 'S₂'-H₂, with three equivalents of *n*-BuLi in the presence of three equivalents of TMEDA yielded 'S₂'-Li₃, in which the thiolate sulfur atoms and one *ortho* C atom are metalated. Subsequent reaction with solid carbon dioxide and acidic work-up resulted in 2,3-dimercaptobenzoic acid, 'CO₂H-S₂'-H₂ (1).

This procedure essentially follows the reports of J. Martin et al., E. Block et al., and K. Smith et al., who describe the ortho lithiation and subsequent carboxylation of thiophenol^[8,9]. 1 proved to be soluble in MeOH, THF, Et₂O, MeCN, DMSO and DMF, but insoluble in aliphatic and chlorinated hydrocarbons. The EI mass spectrum of 1 gave a peak for the parent ion [${}^{\circ}CO_2H-S_2{}^{\circ}-H_2$] $^+$ at m/z=186. A doubly carboxylated product was not detected.

All attempts to link two units of 1 with a C_2H_4 or an $X(C_2H_4)_2$ (X = NH, S) bridge by the template alkylation at $[Fe(CO)_2]$ fragments to give regioselectively the corresponding tetra- or pentadentate ligands have been unsuccessful so far. This method, however, has proved very efficient in template alkylations of ' S_2 '- H_2 ^[10] or ' $^{bu}S_2$ '- H_2 (= 3,5-ditertiary-butyl-1,2-dimercaptobenzene)^[11].

Because of these initial difficulties, we tried to obtain such polydentate derivatives via the methyl ester 'CO₂Me-S₂'-H₂ (2). 2 was formed by refluxing 1 in MeOH in the presence of HCl and proved to be soluble in all common organic solvents. Deprotonation of 2 by LiOMe and subsequent treatment with FeCl₂ · 4 H₂O and CO in MeOH yielded Li₂[Fe(CO)₂('CO₂Me-S₂')₂] (3). 3 could not be isolated, but was observed in solution. As in the parent complex, Na₂[Fe(CO)₂('S₂')₂]^[12], two strong v(CO) absorptions in the solution IR spectrum at 2000 and 1942 cm⁻¹ indicated the presence of the *cis*-Fe(CO)₂ entity and the anionic character of [Fe(CO)₂('CO₂Me-S₂')₂]²⁻.

Alkylation of 3 by $C_2H_4Br_2$ led to the neutral complex $[Fe(CO)_2(^{\circ}CO_2Me-S_4^{\circ})]$ (4), which formed as a mixture of two diastereomeric, C_2 symmetrical complexes (4a and 4b). This mixture could be separated by crystallization and both

Scheme 2. Synthesis of 'CO₂H-S₄'-H₂ (7). (i) 6 *n*-BuLi, 6 TMEDA, cyclohexane, 0°C → room temp.; (ii) 1. excess CO₂, 2. excess HCl/H₂O, 0°C; (iii) HCl gas, MeOH, reflux; (iv) 4 LiOMe, FeCl₂ · 4 H₂O, CO 1 bar, MeOH; (v) C₂H₄Br₂; (vi) HCl excess, THF, reflux; (vi) 4 NaOH, H₂O/THF; (vii) 4 HCl, H₂O

diastereomers were readily soluble in THF, CH₂Cl₂, CHCl₃, DMSO and DMF, but insoluble in H₂O and MeOH.

The diastereoisomerism of **4a**, **b** does not result from the two different thioether thiol ligands, such as **5** and the isomer D, that can potentially form if the thiolates either *meta* or *ortho* to the CO₂Me groups (in the 'CO₂Me-S₂'²⁻ subunits of **3**) are symmetrically linked by a C₂H₄ bridge. This was proved by the acidic hydrolysis of a mixture of **4a**, **4b**. The reaction yielded the isomerically pure dithioether dithiol ligand 'CO₂Me-S₄'-H₂ (**5**), in addition to FeCl₂ and CO, and thus established the regioselectivity of the template alkylation. **5** is soluble in CH₂Cl₂, CHCl₃, THF, Et₂O, DMSO and DMF.

Saponification of the methyl esters in 5 by treating it with NaOH in H₂O/THF gave 'CO₂-S₄'-Na₄ (6). 6 dissolved in water and methanol and yielded 'CO₂H-S₄'-H₂ (7) as white powder upon treatment with aqueous HCl. 7 proved soluble in THF and DMF but insoluble in H₂O and MeOH.

Synthesis of Complexes

The isolation of the free dicarboxylic acid thioether thiol 7 allowed for the synthesis of water soluble complexes. FeCl₂ · 4 H₂O, 7 and CO in the presence of LiOMe yielded red Li₂[Fe(CO)₂('CO₂-S₄')] (8) according to eq. (1).

FeCl₂ 4 H₂O
+ 7
$$CO, 1 \text{ bar}$$
 Li_2 S Fe CO
+ 4 LiOMe
+ 2 LiCl + 4 H₂O + 4 MeOH (1)

8 was isolated as the MeOH solvate and is soluble in H_2O and MeOH, but insoluble in all common organic solvents. Like the methyl ester complex **4**, complex **8** also formed as a mixture of two diastereomeric, C_2 symmetrical species. **8** could be reversibly protonated with dilute hydrochloric acid, but so far it has not been possible to isolate the resulting carboxylic acid complex in pure form.

In the case of ruthenium, the isolation of a carboxylic acid complex in pure form was possible according to eq. (2).

Yellow [Ru(PPh₃)₂('CO₂H-S₄')] (9) was isolated as the THF solvate 9 · 2 THF. The THF is possibly hydrogenbonded to the CO₂H functions and could not be removed even by prolonged drying in vacuo. In contrast to 4 or 8, the synthesis of 9 yielded only one of the two theoretically possible diastereomers. Like the parent compound [Ru(PPh₃)₂('S₄')]^[13], 9 is insoluble in water and soluble in aprotic solvents such as acetone, CH₂Cl₂, CHCl₃, DMF and DMSO. In contrast to the parent complex, however, 9 dissolves in MeOH and becomes soluble in water when treated with bases such as KOH [eq. (2)]. The resulting potassium salt was isolated as K₂[Ru(PPh₃)₂('CO₂-S₄')] · 2 H₂O (10 · 2 H₂O). This salt is insoluble in aprotic organic solvents and can be reversibly protonated to give 9 again.

In order to gain a better insight into the reactions leading from ' CO_2Me-S_2 '- H_2 (2) to the template alkylation product, [Fe($CO)_2$ (' CO_2Me-S_4 ')] (4), as shown in Scheme 1, the intermediate complex resulting from the reaction of FeCl₂ · 4 H_2O with ' CO_2Me-S_2 '- Li_2 was isolated as the AsPh₄⁺ salt according to eq. (3).

$$Fe^{2+} + 2'CO_{2}Me - S_{2}'^{2-} + 2 AsPh_{4}^{+}$$

$$(AsPh_{4})_{2} \begin{bmatrix} S & S & CO_{2}Me \\ CO_{2}Me & S \end{bmatrix}$$
11 (3)

Dark red crystals of the paramagnetic complex, $(AsPh_4)_2[Fe(`CO_2Me-S_2')_2]$ (11) formed and were fully characterized. The X-ray structure analysis confirmed the structure indicated in eq. (3). 11 exhibited a magnetic moment of $\mu_{eff} = 2.96 \ \mu_B$ (298 K) indicating an S = 1 spin

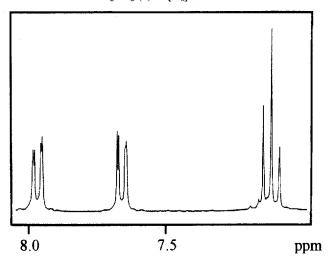
state for the Fe(II) center. The 1 H-NMR spectrum showed, in addition to the AsPh₄⁺ multiplet at $\delta = 7.83-7.73$, paramagnetically shifted singlets at $\delta = 6.32$, -3.27, -8.75 and -10.96 that were assigned to the methyl and the aromatic protons of the $^{\prime}$ CO₂Me-S₂ $^{\prime 2-}$ ligands due to their intensities. The number of signals suggests that only one stereoisomer of 11 is present in solution.

The $[Ru(NO)({}^{\circ}CO_2Me-S_2{}^{\circ})_2]^-$ anion had been of interest in order to attempt regioselective template alkylations of the ${}^{\circ}CO_2Me-S_2{}^{\circ}$ units by $NH(C_2H_4Br)_2$ or $S(C_2H_4Br)_2$ in hopes of leading to isomerically pure pentadentate ligands. All attempts to obtain these ligands through template alkylation of $[Fe(CO)_2({}^{\circ}CO_2Me-S_2{}^{\circ})_2]$ (3) have failed to date.

The treatment of $(NBu_4)_2({}^{\circ}CO_2Me-S_2{}^{\circ})_2$ with "Ru-(NO)Cl₃", which was obtained from the reaction of RuCl₃ $\cdot x$ H₂O and gaseous NO^[14] in MeOH, yielded (NBu₄)[Ru-(NO)(${}^{\circ}CO_2Me-S_2{}^{\circ})_2$] (12) as red-brown micro crystals according to eq. (4).

"Ru(NO)Cl₃" + 2 (NBu₄)₂('CO₂Me-S₂')
$$\frac{-3 \text{ (NBu4)Cl}}{\text{MeOH}}$$
(NBu₄)[Ru(NO)('CO₂MeS₂')₂] (4)

12 is diamagnetic and soluble in CH_2Cl_2 , $CHCl_3$, acetone, THF, DMSO and DMF. The number of 1H and $^{13}C\{^1H\}$ -NMR signals indicated that the anion of 12 exhibits twofold symmetry in solution. This is compatible with several configurations that have been discussed previously for the related anion $[Ru(NO)(^{6bu}S_2')_2]^{-[15]}(^{6bu}S_2'-H_2=3,5-di-tertiary-butyl-1,2-dimercaptobenzene)$. A selection of the possible isomers is shown in formulas E-G.


However, all attempts to obtain the pentadentate ligands by template alkylation of 12 were as yet unsuccessful.

Spectroscopic Characterization

All compounds containing 'CO₂R-S₂' entities displayed in their ¹H-NMR spectra a typical splitting pattern of one triplet and two doublets for the ABC spin system of the aromatic protons; this pattern resembles that of 2,3-dihydroxybenzoic acid^[16]. Figure 1 displays the aromatic re-

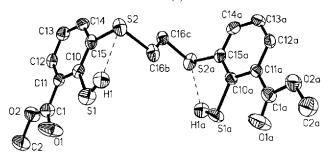
gion of the ¹H-NMR spectrum of 'CO₂H-S₂'-H₂ (1) as an example.

Figure 1. Aromatic region of the $^1H\text{-NMR}$ spectrum of 'CO $_2H\text{-}$ S $_2$ '-H $_2$ (1) in [D $_6$]acetone

In our studies, this pattern served as a sensitive probe for monitoring the purity of compounds such as 1 or 2. It also allowed for an analysis of the stereochemistry of compounds 4–12, each of which contains two 'CO₂R-S₂' units. The ¹H-NMR spectra of isomerically pure 4a, 4b, 5–7, 9, 10 and 12 show only one such signal pattern proving the magnetic equivalence of the aromatic protons of the two 'CO₂R-S₂' entities and indicating the twofold symmetry of the respective compounds. In contrast, the ¹H-NMR spectra of Li₂[Fe(CO)₂('CO₂-S₄')] (8) and the diastereomeric mixture of [Fe(CO)₂('CO₂Me-S₄')] (4a, b) exhibit two sets of this signal pattern with different intensities. The δ(SH) shifts of 'CO₂Me-S₄'-H₂ (5) and 'CO₂H-S₄'-H₂ (7) (6.52 and 7.23) indicated that the S atoms in the position *meta* to the CO₂Me groups are bound to the ethylene bridge.

The IR (KBr) spectra of **8** and **10** exhibit two carboxylate bands at about 1590 and 1390 cm⁻¹ indicating that the CO_2^- groups are not coordinated to the metal centers^[17]. The IR (KBr) spectra of **4a**, **b** and **8** show two strong v(CO) bands of nearly equal intensities and point to the *cis* coordination of the CO ligands. In conjunction with the IR spectroscopic results, the NMR spectra thus allowed for the assignment of C_2 symmetry for **4a**, **b** and **8**. The *cis* coordination of the two PPh₃ ligands in the [Ru(PPh₃)₂('CO₂R-S₄')] complexes **9** and **10** is assumed by analogy to the numerous [RuL₂('S₄')] complexes characterized by X-ray structural analysis^[18].

The twofold symmetry, that was concluded from ^{1}H -NMR spectra, could be corroborated in all cases by $^{13}C\{^{1}H\}$ and $^{31}P\{^{1}H\}$ -NMR spectra. The $^{13}C\{^{1}H\}$ -NMR spectrum of **9** displays a complex splitting pattern resulting from the $^{13}C_{-}^{31}P$ coupling. The $C_{2}H_{4}$ signal of the $^{13}C_{-}^{31}P$ coupling and $^{13}C_{-}^{31}P$ signals of the $^{13}C_{-}^{31}P$ signals appear as pseudo triplets and the $^{13}C_{-}^{31}P$ signal as pseudo quintet, because the $^{13}C_{-}^{31}P$ atoms are the $^{13}C_{-}^{31}P$ spin systems in which the two $^{13}C_{-}^{31}P$ atoms are the $^{13}C_{-}^{31}P$ atoms

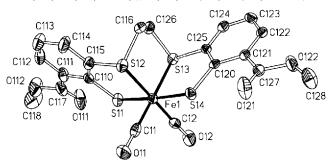

The signals of the aromatic H and C atoms of all diamagnetic compounds could be assigned by the use of the corresponding increment systems^[20].

Noteworthy are the analogies and differences between $(NBu_4)[Ru(NO)(^{\circ}CO_2Me-S_2^{\circ})_2]$ (12) and the parent complex $(NBu_4)[Ru(NO)(^{\circ}S_2^{\circ})_2]^{[21]}$. Both complexes yield green solutions in CH_2Cl_2 or $CHCl_3$ that showed one intense v(NO) IR band at 1745 cm⁻¹ and that contained, according to the NMR spectra, mononuclear anions, which exhibit twofold symmetry. In the solid state, however, 12 is brown, and its v(NO) band is shifted to 1785 cm⁻¹; however the parent compound remains green, and its v(NO) band is in the original position at 1740 cm⁻¹. This could suggest that the anion of 12 dimerizes in the solid state. Furthermore, the approximately identical v(NO) frequencies of 12 and the parent compound in solution indicate that the CO_2Me substituents have no influence on the electron density at the Ru center.

X-ray Structural Analyses of [Fe(CO)₂('CO₂Me-S₄')] (4a), 'CO₂Me-S₄'-H₂ (5) and (AsPh₄)₂[Fe('CO₂Me-S₂')₂] (11)

The X-ray structural analysis of [Fe(CO)₂('CO₂Me-S₄')] (4a) and 'CO₂Me-S₄'-H₂ (5) provided the final proof that the thiolate donors in the position *meta* to the CO₂Me groups are linked in the template alkylation of [Fe(CO)₂-('CO₂Me-S₂')₂]²⁻ by C₂H₄Br₂ [step (v) in Scheme 2].

Figure 2. ORTEP plot of 'CO₂Me-S₄'-H₂ (5) drawn with 50% probability ellipsoids (H atoms bound to C atoms omitted). Selected distances (pm): S(1)-C(10) 176.7(4), S(2)-C(15) 178.2 (4), S(2)-C(16b) 194.0(8), C(16b)-C(16c) 151.6(13), C(11)-C(1) 148.1(6), C(1)-O(1) 118.5(5), C(1)-O(2) 132.9(5), O(2)-C(2) 144.5(6). Selected angles (°): C(15)-S(2)-C(16a) 99.4(3), S(2)-C(16b)-C(16c) 105.2(6), S(1)-C(10)-C(15) 121.3(3), C(15)-C(14)-C(13) 120.7(4), S(1)-C(10)-C(11) 120.5(3), C(11)-C(1)-O(2) 112.3(4), O(1)-C(1)-O(2) 122.0(4), O(1)-O(2)-C(2) 115.6(3)


'CO₂Me-S₄'-H₂ (5) has crystallographically imposed C_2 symmetry (Figure 2). The C atoms of the ethylene bridge are disordered; Figure 2 shows only the ethylene carbon atoms that have the positions with the higher occupation of 53(1)%.

5 has an angular chain structure in which the benzene rings are arranged parallel to each other. This resembles the structure of the related molecules, H_2 -' $S_2N_2Me_2$ ' [' $S_2N_2Me_2$ '2- = 1,2-ethanediamine-N,N'-dimethyl-N,N'-bis-(2-benzenethiolate)(2-)] and H_2 -' $S_2N_2H_2$ ' [' $S_2N_2H_2$ '2- = 1,2-ethanediamine-N,N'-bis(2-benzenethiolate)(2-)][^{22]}. Angles and distances of **5**, including the C-C distances in the benzene rings that range from 137.5(6) to 141.3(6) pm,

show no anomalies^[23]. The distances H(1)–S(2) and H(1a)–S(2a) (253.5 pm) are shorter than the sum of the van der Waals radii of hydrogen and sulfur ($r_H = 100$ pm, $r_S = 180$ pm^[24]) and thus suggest intramolecular S–H···S bridges. We expected to find S–H···O bridges to the O atom of the methyl ester groups in the *ortho* position due to the higher electronegativity of the O atom^[24a,25].

Figure 3 shows the molecular structure of the isomer 4a of [Fe(CO)₂('CO₂Me-S₄')]. 4a crystallizes in red cubes and the asymmetric unit of 4a contains two independent chiral molecules that are approximately enantiomeric; both isomers are identical within standard deviation.

Figure 3. ORTEP plot of [Fe(CO)₂('CO₂Me-S₄') (4a) drawn with 50% probability ellipsoids (H atoms omitted). Selected distances (pm). Fe(1) - C(11) 175.9(8), Fe(1) - S(11) 229.0(3), Fe(1) - S(12) 226.3(3), Fe(1) - S(13) 228.8(3), Fe(1) - S(14) 229.6(3), 226.3(3), Fe(1)-S(13) 228.8(3), Fe(1)-S(14) 229.6(3), C(11)-O(11) 117.7(10), S(11)-C(110) 173.6(8), S(12)-C(115) 178.1(7), S(12)-C(116) 184.3(8), C(116)-C(126) 147.9(13), C(115)-C(110) 141.5(13), C(111)-C(110) 142.3(9). Selected angles): C(11) - Fe(1) - C(12) = 91.1(4), Fe(1) - C(11) - O(11) = 179.4(6), C(11) - Fe(1) - S(11), 91.0(3), C(11) - Fe(1) - S(12) 88.6(3), S(11)176.7(1), 89.4(1), $\hat{S}(11) - \hat{F}e(1) - \hat{S}(14)$ Fe(1) - S(12)Fe(1) S(11)-C(110) 104.9(3), Fe(1)-S(12)-C(115) 104.4(3), S(12)-C(116) 101.8(3), S(12)-C(116)-C(126) 111.7(6) S(11) $\acute{C}(110) - \acute{C}(111) \ 123.1(7), \ \acute{C}(115) - \acute{C}(110) - \acute{C}(111) \ 116.0(7)$

The Fe center of 4a is pseudo octahedrally coordinated by four sulfur donors and two CO ligands. The thiolate atoms are trans, while the thioether and C donors are cis to each other; therefore 4a can be considered to possess idealized C_2 symmetry. The Fe-S(thiolate) [229.0(3)/229.6(3) pm] and Fe-S(thioether) distances [226.3(3)/228.8(3) pm] lie in the same range and are identical within the 3σ criterion. This similarity can be traced back to the σ-donor- π -donor and σ -donor- π -acceptor characteristics of the respective Fe-S bonds^[11,26]. Similar distances were found previously for the parent compound [Fe(CO)2('S4')][27] and the tertiary butyl derivative [Fe(CO)₂('buS₄')]^[11]; this showed that the CO₂Me or tertiary butyl substituents in the benzene rings do not influence the Fe-S bonds. It should also be noted that the distances and angles of the 'CO₂Me- S_4^{2} core in 4a and the free ligand 5 are practically ident-

The exact stereochemistry of (AsPh₄)₂[Fe('CO₂Me-S₂')₂] (11) was elucidated by X-ray structure analysis. 11 consists of discrete AsPh₄⁺ cations and [Fe('CO₂Me-S₂')₂]²⁻ anions (Figures 4 and 5).

The AsPh₄⁺ cations reveal a nearly regular tetrahedral structure. The Fe center of the [Fe('CO₂Me-S₂')₂]²⁻ anion lies on a crystallographic inversion center and is square planar coordinated by the four thiolate atoms. The C-C

Figure 4. Projection of the unit cell of (AsPh₄)₂[Fc('CO₂Me-S₂')₂] (11)

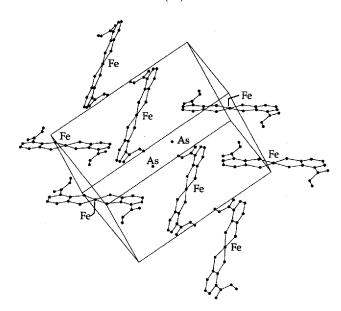
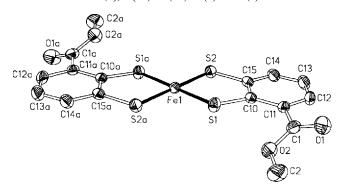
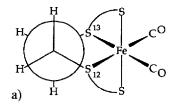
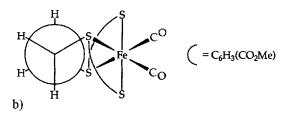



Figure 5. Molecular structure of $[Fe(^{\circ}CO_2Me\text{-}S_4^{\circ})]^{2^-}$ drawn with 50% probability ellipsoids (H atoms omitted). Selected distances [pm]: Fe(1)-S(1a) 220.55(8), Fe(1)-S(1) 220.55(8), Fe(1)-S(2) 220.72(8), Fe(1)-S(2a) 220.72(8), S(1)-C(10) 175.7(3), S(2)-C(15) 176.5(3), C(15)-C(14) 138.7(4), C(15)-C(10) 141.8(3), C(14)-C(13) 138.5(4), C(13)-C(12) 137.7(4). Selected angles (°): S(1a)-Fe(1)-S(1) 180.0, S(1a)-Fe(1)-S(2) 90.09(3), S(1)-Fe(1)-S(2) 89.91(3), S(1a)-Fe(1)-S(2a) 89.91(3), S(1)-Fe(1)-S(2a) 90.09(3), S(2)-Fe(1)-S(2a) 180.0, C(15)-S(2)-Fe(1) 105.60(9), C(15)-S(2)-Fe(1) 105.60(9), C(14)-C(15)-S(2) 120.0(2), C(10)-C(15)-S(2) 119.7(2)

distances in the benzene rings range from 137.4(4) to 141.8(3) pm and do not suggest dithioketone character in the sulfur ligands. Figure 4 further shows that no direct S-Fe-S contacts exist between different anions. The Fe-S distances (220.55(8), 220.72(8) pm) are relatively short and nearly identical with those observed for the parent compound $(AsPh_4)_2[Fe(`S_2`)_2]^{[28]}$. They are also in excellent agreement with the values expected from the correlation between the electron configuration and the Fe-S distances in this type of complex result from the π donation of the sulfur p-electrons to empty iron d orbitals such that the Fe center can achieve the 18 valence electron configuration.


It should be noted that [Fe('CO₂Me-S₂')₂]²⁻ is an example of a relatively rare class of square planar, monomeric


 d^6 iron(II) thiolate complex. These complexes have been compared and contrasted to tetrahedral Fe(II) complexes such as [Fe(SPh)₄]^{2-[30]} and related d^4 , d^5 and d^6 complexes in detail elsewhere^[28,29,31].

Discussion of the Isomerism of [Fe(CO)₂('CO₂Me-S₄')] (4) and the Regioselectivity of the Template Alkylation

In **4a**, the ethylene bridge of the chelate ligand exhibits the same gauche conformation as in $[Fe(CO)_2(^{\circ}S_4^{\circ})]^{[27]}$ and $[Fe(CO)_2(^{\circ}S_4^{\circ})]^{[11]}$ and is indicated by the Newman type projection in Figure 6a. The diastereomer **4b** can be reasonably explained by assuming that the alkylation of the two *cis* thiolate donors for this isomer led to the conformation depicted in Figure 6b. This complex is related to the one shown in Figure 6a by an inversion of the two C atoms in the C_2 bridge.

Figure 6. a) Newman projection along the C116-C126 bond in 4a, b) proposed structure for 4b

Molecular models show that 4b is sterically more strained than 4a. Accordingly, 4a and the diastereomer 4b might be, respectively, the thermodynamically and kinetically controlled alkylation products. This proposal was supported by the varying ratios of 4a:4b that resulted when the alkylations of the precursor anion 3 were carried out at different temperatures. The ratios of 4a:4b decreased from 3:1 at ~ 20 °C to 1:1 at 0 °C and 1:11 at -20 °C. Template alkylations at higher temperatures were impossible because of the thermal lability of the CO ligands of 3.

The formation of only one stereoisomer for the precursor anion in $(AsPh_4)_2[Fe('CO_2Me-S_2')_2]$ (11) and the regioselectivity of the alkylation reactions of the corresponding $[Fe(CO)_2('CO_2Me-S_2')_2]^{2-}$ anion in 3 can both be traced back to the steric demands of the CO_2Me substituents. In the first case, repulsion of the CO_2Me groups favors the stereoisomer of C_i symmetry, which minimizes the interactions between the two substituents.

In the alkylation reactions, this repulsion may also play a role. An additional and possibly more important role of the CO₂Me groups may be to shield the *ortho* thiolate S atoms. Molecular models show that the CO₂Me substituents could effectively hinder the access of electrophilic alky-

lation reagents to the *ortho* thiolates. In particular, the methyl groups can come into close contact to the thiolate S atoms. This may explain why all attempts to template alkylate the carboxylate derivative 'CO₂-S₂'³⁻ in a regioselective way have not been successful. It should also be noted that the coordination of two additional CO ligands to the anion of 11 is also required for the formation of the desired configuration of the two dithiolate ligands.

As outlined in Scheme 3, the coordination of CO can be assumed to proceed stepwise yielding a stereochemically non-rigid five coordinate intermediate, **H**, in the first step. It must be the coordination of the second CO that favors the formation of **I** instead of the alternatives such as **J**. I exhibits the proper configuration for the subsequent alkylation to yield **4**. Thus, in summary, the regioselective formation of 'CO₂Me-S₄'²⁻ is due to steric repulsion of the two CO₂Me substituents *and* the shielding of the thiolate S atoms in their *ortho* position.

Concluding Discussion

The derivatization of metal ligands such that the resulting complexes are soluble in water is an important issue in catalysis^[32]. For example, sulfonation of 2,2'-bis(diphenylphosphinomethyl)-1,1'-binaphthalene has led to rhodium catalysts that carry out hydroformylation in aqueous solution^[33]. The synthesis of carboxylic acid derivatives of the tetradentate ligand 'S₄'-H₂ was the goal of this work.

These ligands are important for the ultimate goal, which is to synthesize metal complexes that can coordinate and subsequently reduce molecular dinitrogen under mild reducing conditions in aqueous media. In the course of this work, 1,2-benzenedithiol could be converted into 2,3-dimercaptobenzoic acid 1. The linkage of the two units of 1 to give the tetradentate dithioether dithiol ligand 'CO₂H-S₄'-

H₂ (7) required the esterification of 1 yielding 'CO₂Me-S₂'-H₂ (2), because only 2 could be alkylated with 1,2-C₂H₄Br₂ in a regioselective way at [Fe(CO)₂] templates. Finally, the desired product, 7, could be obtained from the saponification of 'CO₂Me-S₄'-H₂ (5).

The treatment of 7 with FeCl₂ in the presence of CO and LiOMe gave the water soluble complex Li₂[Fe(CO)₂('CO₂-S₄')] (8), which can be reversibly protonated to give the water insoluble product [Fe(CO)₂(CO₂H-S₄)]. In an analogous way, the treatment of [RuCl₂(PPh₃)₃] with neutral 7 led to [Ru(PPh₃)₂('CO₂H-S₄')] (9), and 9 can be reversibly deprotonated by KOH to form the water soluble complex K₂[Ru(PPh₃)₂('CO₂-S₄')] (10). Thus, the neutral complexes and their salts behave like fatty acids with respect to their solubility in aqueous and non-aqueous solvents. The same holds for the free ligand 7 and its sodium salt 'CO₂-S₄'-Na₄ (6).

While **8** and the corresponding methyl ester [Fe(CO)₂-('CO₂Me-S₄')] (**4**) were obtained as mixtures of two diastereomers, **9** and **10** yielded only one stereoisomer. The molecular structures of the reaction intermediate (AsPh₄)₂[Fe-('CO₂Me-S₂')₂] (**11**) and one of the diastereomers of [Fe-(CO)₂('CO₂Me-S₄')] (**4a**) could be elucidated by X-ray structural analysis. The structural data allowed for the rationalization of the diastereoisomerism of **4a** and **4b** which results from conformational differences in the C₂H₄ bridge. The X-ray structural analysis of **5** ultimately confirmed the regioselectivity of the template alkylation. This regioselectivity can be traced back to steric repulsion of the CO₂Me substituents *and* efficient shielding of the *ortho* thiolate S atoms.

The preparation of the free ligand 'CO₂H-S₄'-H₂ (7) now pave the way for investigations leading to the synthesis of

Scheme 3. Proposed reaction mechanism for the regioselective formation of [Fe(CO)₂('CO₂Me-S₄')] (4)

$$\begin{bmatrix} CO_{2}Me \\ S \end{bmatrix} = \begin{bmatrix} CO_{2}Me \\ S \end{bmatrix} = \begin{bmatrix} CO_{2}Me \\ CO_{2}Me \end{bmatrix} = \begin{bmatrix} CO_{2}Me \\ S \end{bmatrix} = \begin{bmatrix} CO$$

key intermediates of N₂ fixation such as N₂H₂ complexes in aqueous solution.

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support of these investigations and Mrs. S. Emig and Dr. M. Moll for assistance in the NMR measurements.

Experimental

General Methods: Unless otherwise noted, all procedures were carried out under N_2 at room temp. using Schlenk techniques. Solvents were dried and distilled before use. As far as possible, the reactions were monitored by IR spectroscopy. Spectra were recorded on following instruments: — IR (CaF₂ cuvettes or KBr discs): Perkin Elmer 1620 FT IR or Perkin Elmer 16 PC FT-IR; solvent bands were compensated. — NMR: JNM-GX 270 and JNM-EX 270. — Mass spectra: Varian MAT 212. — Magnetic susceptibility: Johnson Matthey susceptibility balance. 'S₂'-H₂ = 1,2-benzenedithiol[³⁴], [RuCl₂(PPh₃)₃]³⁵] and RuCl₃(NO) · x H₂O^[14] were prepared by literature methods.

Syntheses

 $CO_2H-S_2'-H_2$ (1): A solution of $S_2'-H_2$ (14.42 g, 11.5 ml, 100) mmol) in cyclohexane (40 ml) was added dropwise at 0°C to a mixture of TMEDA (tetramethylethylenediamine, 37.18 g, 48.3 ml, 320 mmol) and n-BuLi (320 mmol, 128 ml of a 2.5 m solution in n-hexane) in cyclohexane (125 ml). The reaction mixture was stirred for 30 min at 0°C, warmed up to room temp., and stirred for another 22 h. During this time, an off-white precipitate formed. The yellow suspension was poured on an excess of solid CO2 (150 g, 3.4 mol). After the evaporation of the CO₂, concd. hydrochloric acid (240 ml, 2.88 mol) was added at 0°C and the resultant mixture was extracted with Et₂O (1 1). The organic phases were combined, dried with anhydrous Na₂SO₄ (30 g), filtered, and the yellow filtrate was reduced in volume to 100 ml. A yellow powder precipitated that was separated, washed with cyclohexane (300 ml), dried in vacuo, and purified by sublimation (0.2 mbar, 180°C oil bath temperature) yielding pure 1 as a light yellow powder. Yield: 11.9 g (64%) of 'CO₂H-S₂'. $- C_7H_6O_2S_2$ (186.2): calcd. C 45.14, H 3.25, S 34.44; found C 45.01, H 3.22, S 34.30. – IR (KBr): $\tilde{v} = 2985$ cm⁻¹ (OH), 2518 (SH), 1674 (CO₂H). - ¹H NMR ([D₆]acetone): $\delta = 10.90$ (br., 1 H, CO₂H), 7.96 (dd, 1 H, C₆H₃, H ortho to CO_2H), 7.66 (dd, 1H, C_6H_3 , para to CO_2H), 7.12 (t, 1H, C_6H_3 , meta to CO₂H), 7.12 (br., 1H, SH ortho to CO₂H), 4.58 (s, 1H, SH meta to CO₂H). $- {}^{13}C{}^{1}H}$ NMR ([D₆]acetone): $\delta = 169.4$ (CO_2H) , 137.9 $[C_6H_3, C(CO_2Me)]$, 135.3 (C_6H_3, CH) para to CO_2Me), 133.1 [C_6H_3 , C(SH) ortho to CO_2Me], 130.5 (C_6H_3 , CHortho to CO_2Me), 127.6 [C_6H_3 , C(SH) meta to CO_2Me], 125.0 $(C_6H_3, CH \text{ meta to } CO_2Me)$. – EI MS (70 eV), m/z: 186 ['CO₂H- $S_2'-H_2]^+$.

 ${}^{\prime}CO_2Me$ - $S_2{}^{\prime}$ - H_2 (2): Gaseous HCl was bubbled through a yellow solution of ${}^{\prime}CO_2H$ - $S_2{}^{\prime}$ - H_2 (1) (7.09 g, 38.1 mmol) in MeOH (70 ml) for 15 min at $-78\,{}^{\circ}C$. The yellow solution was refluxed for 15 h and then the solvent was removed under vacuum yielding a viscous yellow residue. It was dissolved in 70 ml of cyclohexane and dried by addition of anhydrous Na₂SO₄ (5 g). After filtration and removal of the solvent, distillation of the residue (110–112 ${}^{\circ}C$ /0.2 mbar) yielded a yellow oil that solidified at room temp. Yield: 4.4 g (57%) of ${}^{\prime}CO_2Me$ -S₂'-H₂. $-C_8H_8O_2S_2$ (200.3): calcd. C 47.97, H 4.03, S 32.02; found C 48.13, H 4.03, S 31.79. - IR (KBr): \tilde{v} = 2493 cm⁻¹ (SH), 1703, 1287, 1250 (CO₂Me). - ¹H NMR (CDCl₃): δ = 7.89 (d, 1 H, C₆H₃, ortho to CO₂Me), 7.54 (d, 1 H, C₆H₃, para to CO₂Me), 7.04 (t, 1 H, meta to CO₂Me), 6.57 (s, 1 H, SH, ortho to CO₂Me), 3.81 (s, 3 H, CH₃), 3.60 (s, 1 H, SH, meta to CO₂Me).

 $^{-13}$ C{¹H} NMR (CDCl₃): $\delta = 167.7$ (CO₂Me), 138.3 [C₆H₃, C(SH) ortho to CO₂Me], 135.3 (C₆H₃, CH para to CO₂Me), 131.1 [C₆H₃, C(CO₂Me)], 130.0 (C₆H₃, CH ortho to CO₂Me), 127.2 [C₆H₃, C(SH) meta to CO₂Me], 124.0 (C₆H₃, CH meta to CO₂Me), 52.5 (CH₃). – FD MS (70 eV, CH₂Cl₂), *m/z*: 200 ['CO₂Me-S₂'-H₂]⁺.

 $Li_2[Fe(CO)_2('CO_2Me-S_2')_2]$ (3): LiOMe in MeOH (40 mmol, 40 ml of a 1 m solution) and $FeCl_2 \cdot 4 H_2O$ (1.98 g, 10 mmol) were added to a solution of 'CO₂Me-S₂'-H₂ (2) (4.01 g, 20 mmol) in MeOH (60 ml). CO was bubbled through the reaction mixture for 2 h yielding a red solution of $Li_2[Fe(CO)_2('CO_2Me-S_2')_2]$ (3) (ca. 10 mmol in 100 ml of MeOH). – IR (MeOH): $\tilde{v} = 2000$, 1942 cm⁻¹ (CO), 1702 (CO₂Me).

[Fe(CO)₂('CO₂Me-S₄')] (4): 1,2-Dibromoethane (0.86 ml, 1.88 g, 10 mmol) was added to 100 ml of the red MeOH solution of Li₂[Fe(CO)₂('CO₂Me-S₂')₂] (3) (10 mmol). The reaction mixture was stirred under a CO atmosphere for 4 h. The bright red precipitate that formed was filtered off, washed with MeOH and Et₂O (50 ml each), dried in vacuo, and identified as a diastereomeric mixture of 4a and 4b. Yield: 3.5 g (65%) of [Fe(CO)₂('CO₂Me-S₄')]. – C₂₀H₁₆FeO₆S₄ (536.5): calcd. C 44.78, H 3.01, S 23.91; found C 44.54, H 3.01, S 23.92. – FD MS (70 eV, CH₂Cl₂), mlz: 536 [Fe(CO)₂('CO₂Me-S₄')]⁺, 426 ['CO₂Me-S₄'-H₂]⁺.

200 mg of the diastereomeric mixture of 4 were dissolved in CH₂Cl₂ (10 ml), and this mixture was layered with the equal volume of Et₂O. Dark red cubes of 4a and bright red plates of 4b crystallized. After decanting the solvent, the two crystal forms were separated manually, and the dark red cubes of 4a proved suitable for X-ray structural analysis. 4a: IR (KBr): $\tilde{v} = 2038$, 1989 cm⁻¹ (CO), 1717 (CO₂Me). - ¹H NMR (CDCl₃): $\delta = 7.82$ (d, 2H, C₆H₃, ortho to CO₂Me), 7.57 (d, 2H, C₆H₃, para to CO₂Me), 7.02 (t, 2H, C_6H_3 , meta to CO_2Me), 3.91 (s, 3H, CO_2CH_3), 3.25 (m, 2H, C_2H_4), 2.43 (m, 2H, C_2H_4). – ¹³C{¹H} NMR (CDCl₃): $\delta = 208.2$ (CO), 167.6 (CO₂Me), 159.9 (C_6H_3 , CS ortho to CO₂Me), 135.2 $(C_6H_3, CH para to CO_2Me)$, 134.5 $[C_6H_3, C(CO_2Me)]$, 133.8 $(C_6H_3, CH \text{ ortho to } CO_2Me)$, 133.2 $(C_6H_3, CS \text{ meta to } CO_2Me)$, 123.4 (C_6H_3 , CH meta to CO_2Me), 52.9 (CO_2CH_3), 43.7 (C_2H_4). **4b**: IR (KBr): $\tilde{v} = 2044$, 1996 cm⁻¹ (CO), 1719 (CO₂Me). $- {}^{1}H$ NMR (CDCl₃): $\delta = 7.70$ (d, 2H, C₆H₃, ortho to CO₂Me), 7.55 (d, 2H, C_6H_3 , para to CO_2Me), 7.13 (t, 2H, C_6H_3 , meta to CO_2Me), 3.91 (s, 3H, CO_2CH_3), 3.91 (m, 2H, C_2H_4 , superimposed), 2.60 (m, 2H, C_2H_4). $- {}^{13}C\{{}^{1}H\}$ NMR: (CDCl₃): $\delta = 209.0$ (CO), 167.3 (CO_2Me) , 161.0 (C_6H_3, CS) ortho to CO_2Me , 135.0 (C_6H_3, CH) para to CO_2Me), 133.2 [C_6H_3 , $C(CO_2Me)$], 130.0 (C_6H_3 , CH ortho to CO₂Me), 129.8 (C₆H₃, CS meta to CO₂Me), 126.5 (C₆H₃, CH meta to CO_2Me), 53.4 (CO_2CH_3), 44.1 (C_2H_4).

 $(CO_2Me-S_4)-H_2$ (5): Concd. hydrochloric acid (5 ml, 60 mmol of HCl) was added to a red solution of [Fe(CO)₂('CO₂Me-S₄')] (4) (4.95 g, 9.22 mmol) in THF (140 ml). The reaction mixture was heated under reflux for 3 h. The solvent was removed under vacuum, and the residue was extracted with CH₂Cl₂ (40 ml). The yellow CH₂Cl₂ solution was chromatographed over 10 cm of SiO₂ (mesh 60), reduced in volume to 20 ml and layered with n-hexane (40 ml). After 2 d, colorless needles were filtered off, washed with n-hexane (40 ml) and dried in vacuo. Yield: 2.6 g (67%) of 'CO₂Me- $S_4'-H_2$. - $C_{18}H_{18}O_4S_4$ (426.6): calcd. C 50.68, H 4.25, S 30.07; found C 50.51, H 4.34, S 30.28. – IR (KBr): $\tilde{v} = 2454 \text{ cm}^{-1}$ (SH), 1709, 1289, 1247 (CO₂Me). – ¹H NMR (CDCl₃): δ = 7.95 (dd, 2H, C_6H_3 , para to CO_2Me), 7.60 (dd, 2H, C_6H_3 , ortho to CO_2Me), 7.04 (t, 2H, C_6H_3 , meta to CO_2Me), 6.52 (s, 2H, SH), 3.92 (s, 6H, CO_2CH_3), 2.99 (s, 4H, C_2H_4). – ¹³C{¹H} NMR (CDCl₃): δ = $168.0 \ (CO_2Me), \ 143.9 \ (C_6H_3, \ CS \ or tho \ to \ CO_2Me), \ 138.9 \ (C_6H_3, \ CS)$

CH para to CO_2Me), 133.8 [C_6H_3 , $C(CO_2Me)$], 132.4 (C_6H_3 , CH ortho to CO_2Me), 128.0 (C_6H_3 , CS meta to CO_2Me), 124.5 (C_6H_3 , CH meta to CO_2Me), 53.2 (CO_2CH_3), 34.6 (C_2H_4). – FD MS (70 eV, CH_2Cl_2), m/z: 426 [' CO_2Me -S₄'- H_2]⁺.

 ${}^{\prime}CO_2 - S_4{}^{\prime} - Na_4$ (6): NaOH (10.2 mmol, 10.2 ml of a 1 M aqueous solution) was added to a solution of ${}^{\prime}CO_2Me - S_4{}^{\prime} - H_2$ (5) (1.08 g, 2.53 mmol) in THF (10 ml). The reaction mixture was stirred for 15 h. Removal of the solvents in vacuo yielded a colorless powder, which was characterized as ${}^{\prime}CO_2 - S_4{}^{\prime} - Na_4$ (6) by ${}^{\prime}H - NMR$ and ${}^{\prime 3}C\{{}^{\prime}H\} - NMR$ spectroscopy. $-{}^{\prime}H$ NMR (D₂O): $\delta = 7.03$ (dd, 2H, C₆H₃, para to CO₂), 6.97 (t, 2H, C₆H₃, meta to CO₂), 6.86 (d, 2H, C₆H₃, ortho to CO₂), 3.25 (s, 2H, C₂H₄). $-{}^{\prime 3}C\{{}^{\prime}H\}$ NMR (D₂O): $\delta = 182.8$ (CO₂), 147.5 (C₆H₃, CS ortho to CO₂), 142.4 [C₆H₃, C(CO₂)], 141.4 (C₆H₃, CS meta to CO₂), 124.7, 124.3, 123.4 (C₆H₃, CH), 33.1 (C₂H₄).

 ${}^{\prime}CO_2H\text{-}S_4{}^{\prime}\text{-}H_2$ (7): ${}^{\prime}CO_2\text{-}S_4{}^{\prime}\text{-}Na_4$ (6) was dissolved in 10 ml of H₂O. After addition of hydrochloric acid (21 mmol, 21 ml of a 1 M aqueous solution), a colorless powder precipitated, which was filtered off, washed with H₂O (30 ml), and dried in vacuo. Yield: 710 mg (70%) of ${}^{\prime}CO_2H\text{-}S_4{}^{\prime}\text{-}H_2$. — $C_{16}H_{14}O_4S_4$ (398.6): calcd. C 48.22, H 3.54; found C 48.55, H 3.58. — IR (KBr): $\tilde{v}=2960~\text{cm}^{-1}$ (OH), 2511 (SH), 1682 (CO₂H). — ${}^{1}\text{H}$ NMR ([D₈]THF): $\delta=10.80$ (br., 2H, CO₂H), 8.02 (dd, 2H, C₆H₃, para to CO₂H), 7.60 (dd, 2H, C₆H₃, ortho to CO₂H), 7.23 (s, 2H, SH), 7.07 (t, 2H, C₆H₃, meta to CO₂H), 3.09 (s, 4H, C₂H₄). — ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR ([D₈]THF): $\delta=169.1$ (CO₂H), 144.2 (C₆H₃, CS ortho to CO₂H), 137.7 (C₆H₃, CH para to CO₂H), 134.8 (C₆H₃, C(CO₂H)), 132.4 (C₆H₃, CH ortho to CO₂H), 127.8 (C₆H₃, CS meta to CO₂H), 124.4 (C₆H₃, CH meta to CO₂Me), 34.5 (C₂H₄). — FD MS (70 eV, THF), m/z: 398 ['CO₂H-S₄'-H₂]⁺.

 $Li_2[Fe(CO)_2(CO_2-S_4)]$ (8): LiOMe (3.72 mmol, 3.72 ml of a 1 м solution in MeOH) and FeCl₂ · 4 H₂O (185 mg, 0.93 mmol) dissolved in 5 ml of MeOH were added successively to a suspension of 'CO₂H-S₄'-H₂ (7) (370 mg, 0.93 mmol) in MeOH (10 ml). The resultant solution was saturated with CO for 15 min, combined with THF (15 ml) and filtered over filter pulp. After removal of the solvents the red residue was suspended in THF (20 ml), stirred for 1 h, separated, washed with THF (10 ml), and dried in vacuo. Yield: 280 mg (55%) of $Li_2[Fe(CO)_2('CO_2-S_4')]$ · MeOH. – C₁₉H₁₄FeLi₂O₇S₄ (552.3): calcd. C 41.32, H 2.56, S 23.23; found C 40.97, H 2.65, S 23.64. – IR (MeOH): $\tilde{v} = 2042$, 1998 cm⁻¹ (CO), 1585 (CO₂). – IR (KBr): $\tilde{v} = 2043$, 1994 cm⁻¹ (CO), 1588, 1391 (CO₂). The ¹H-NMR spectra indicated that 8 contained a mixture of two C_2 symmetrical diastereomers 8a and 8b in the approximate ratio of 4:1. ¹H NMR (D₂O): $\delta = 7.48$ (d, 2H, C₆H₃, ortho to CO₂Me, 8a), 7.36 (d, 2H, C₆H₃, ortho to CO₂Me, 8b), 7.09 (d, 4H, C_6H_3 , para to CO_2Me , 8a and 8b, superimposed), 6.97 (t, 4H, C_6H_3 , meta to CO_2Me , 8a and 8b, superimposed), 3.56 (m, 2H, C_2H_4 , **8b**), 3.37 (m, 4H, C_2H_4 , **8a** and **8b**, superimposed), 2.28 (m, 2H, C_2H_4 , 8a).

[Ru(PPh₃)₂('CO₂H-S₄')] (9): 'CO₂H-S₄'-H₂ (7) (205 mg, 0.51 mmol) was added to a red brown solution of RuCl₂(PPh₃)₃ (495 mg, 0.51 mmol) in THF (15 ml). The color changed to green-brown and a yellow powder precipitated. This powder was filtered off after 3 h, washed with THF (10 ml), and dried in vacuo. Yield: 400 mg (67%) of [Ru(PPh₃)₂('CO₂H-S₄')] · 2 THF (9 · 2 THF). -- C₆₀H₅₈P₂O₆RuS₄ (1166.4): calcd. C 61.78, H 5.01, S 11.00; found C 61.60, H 5.05, S 10.83. – IR (KBr): $\bar{\nu}$ = 2970 cm⁻¹ (OH), 1717 (CO₂H). – ¹H NMR (CDCl₃): δ = 12.59 (br., 2H, CO₂H), 7.95 (d, 2H, C₆H₃, para to CO₂H), 7.45 (m, 12H, C₆H₅), 7.15 (t, 6H, C₆H₅), 7.03 (t, 12H, C₆H₅), 6.85 (d, 2H, C₆H₃, ortho to CO₂H), 6.62 (t, 2H,C₆H₃, meta to CO₂H), 2.60 (m, 2H, C₂H₄), 1.97 (m,

2H, C_2H_4). - ¹³C{¹H} NMR (CDCl₃): δ = 168.4 (CO₂H), 157.6 (C₆H₃), 136.1 (C₆H₃), 135.6 (t, C₆H₅, C ortho), 135.3 (C₆H₃), 135.0 (C₆H₃), 133.9 (qu, C₆H₅, C ispo), 131.3 (C₆H₃), 130.6 (s, C₆H₅, C para), 127.7 (t, C₆H₅, C meta), 123.1 (C₆H₃), 42.9 (t, C₂H₄). - ³¹P{¹H} NMR (CDCl₃): δ = 25.4.

 $K_2[Ru(PPh_3)_2(`CO_2-S_4')]$ (10): KOH (0.16 mmol, 0.16 ml of a 1 M aqueous solution) was added to a yellow suspension of [Ru(PPh_3)_2(`CO_2H-S_4')] (9 · 2 THF) (95 mg, 0.08 mmol) in MeOH (10 ml) yielding a yellow solution that was filtered over filter pulp. After removal of the solvents the resultant yellow powder was dried in vacuo. Yield: 75 mg of K₂[Ru(PPh_3)₂(`CO₂-S₄')] · 2 H₂O (83%). – C₅₂H₄₄K₂P₂O₆RuS₄ (1134.4): calcd. C 55.06, H 3.91, S 11.31; found C 55.28, H 4.17, S 11.45. – IR (KBr): \tilde{v} = 1591, 1386 cm⁻¹ (CO₂). – ¹H NMR (D₂O): δ = 7.37 (m, 12 H, C₆H₅), 7.11 (t, 6 H, C₆H₅), 6.97 (t, 12 H, C₆H₅), 6.88 (d, 2 H, C₆H₃, para to CO₂H), 6.75 (d, 2 H, C₆H₃, ortho to CO₂H), 6.59 (t, 2 H, C₆H₃, meta to CO₂H), 2.60 (m, 2 H, C₂H₄), 1.92 (m, 2 H, C₂H₄). – ³¹P{¹H} NMR (CD₃OD): δ = 27.8.

(AsPh₄)₂[Fe('CO₂Me-S₂')₂] (11): LiOMe (5.40 mmol, 5.40 ml of a 1 M solution in MeOH) and FeCl₂ · 4 H₂O (270 mg, 1.35 mmol) dissolved in 10 ml of THF were added successively to a solution of 'CO₂Me-S₂'-H₂ (2) (540 mg, 2.70 mmol) in MeOH (10 ml). The resultant bright red solution was filtered over filter pulp and layered with a solution of AsPh₄Cl · H₂O (1.18 g, 2.70 mmol) in MeOH (10 ml). Dark red crystals precipitated that were separated after 3 d, washed with MeOH and Et₂O (10 ml each), and dried in vacuo. Yield: 1.2 g (73%) of (AsPh₄)₂[Fe('CO₂Me-S₂')₂]. – C₆₄H₅₂As₂FeO₄S₄ (1219.0): calcd. C 63.06, H 4.30, S 10.52; found C 62.07, H 4.25, S 11.07. – IR (KBr): \tilde{v} = 1709 cm⁻¹ (CO₂Me). ¹H-NMR ([D₆]DMSO): δ = 7.83–7.73 (br., 40 H, C₆H₅), 6.32 (s, 6H, CO₂CH₃), -3.27 (br., 2H, C₆H₃), -8.75 (br., 2 H, C₆H₃), -10.96 (br., 2 H, C₆H₃).

 $(NBu_4)[Ru(NO)(`CO_2Me-S_2')_2]$ (12): NO was bubbled through a red-brown solution of RuCl₃ · x H₂O (1.22 g, 4.67 mmol) in MeOH (60 ml) for 7 h. The resultant clear red-violet solution was added rapidly to a solution of 'CO₂Me-S₂'-H₂ (1) (1.87 g, 9.34 mmol) and NBu₄OH (18.7 mmol, 18.7 ml of a 1 m solution in MeOH) in 40 ml of MeOH yielding a green solution. Brown microcrystals began precipitating, and these crystals were separated after 3 h, washed with MeOH and Et₂O (20 ml each), and dried in vacuo. Yield: 1.9 g (51%) of $(NBu_4)[Ru(NO)('CO_2Me-S_2')_2]$. – C₃₂H₄₈N₂O₅RuS₄ (770.1); calcd. C 49.91, H 6.28, N 3.64, S 16.66; found C 49.95, H 6.36, N 3.66, S 16.72. – IR (KBr): $\tilde{v} = 1785$ cm⁻¹ (NO), 1715, 1250 (CO₂Me). - ¹H NMR (CDCl₃): $\delta = 7.80$ (d, 2H, C_6H_3 , ortho to CO_2Me), 7.56 (d, 2H, C_6H_3 , para to CO_2Me), 7.03 (t, 2H, C_6H_3 , meta to CO_2Me), 3.92 (s, 3H, CO₂CH₃), 2.83 (m, 8H, NCH₂CH₂CH₂CH₃), 1.27 (m, 8H, NCH₂CH₂CH₂CH₃), 1.14 (m, 8H, NCH₂CH₂CH₂CH₃), 0.83 (m, 12H, NCH₂CH₂CH₂CH₃). $- {}^{13}$ C{ 1 H} NMR (CDCl₃): $\delta = 169.1$ (CO_2Me) , 155.1 $(C_6H_3$, CS ortho to CO_2Me), 152.6 $[C_6H_3]$ C(CO₂Me)], 132.9 (C₆H₃, CH para to CO₂Me), 130.9 (C₆H₃, CS meta to CO_2Me), 126.0 (C_6H_3 , CH ortho to CO_2Me), 123.3 (C_6H_3 , CH meta to CO₂Me), 59.2 (NCH₂CH₂CH₂CH₃), 52.6 (CO₂CH₃, 24.5 (NCH₂CH₂CH₂CH₃), 20.2 (NCH₂CH₂CH₂CH₃), 14.3 (NCH₂CH₂CH₂CH₃). - FD MS (70 eV, acetone), m/z: 770 [(N- Bu_4)($Ru(NO)('CO_2Me-S_2')_2$)]⁺, 528 [($Ru(NO)('CO_2Me-S_2')_2$)]⁺

X-Ray Structural Analysis of $[Fe(CO)_2(^{\circ}CO_2Me-S_4')]$ (4a), $^{\circ}CO_2Me-S_4'-H_2$ (5) and $(AsPh_4)_2[Fe(^{\circ}CO_2Me-S_2)_2]$ (11): Red cubes of $[Fe(CO)_2(^{\circ}CO_2Me-S_4')]$ (4a) were obtained by layering a saturated solution of the diastereomeric mixture of $[Fe(CO)_2-(^{\circ}CO_2Me-S_4')]$ (4) in CH_2CI_2 with Et_2O , colorless needles of $^{\circ}CO_2Me-S_4'-H_2$ (5) were formed by layering a saturated CH_2CI_2

Table 1. Selected crystallographic data for [Fe(CO)2('CO2Me-S4')] (4a), 'CO2Me-S4'-H2 (5) and (AsPh4)2[Fe('CO2Me-S2')2] (11)

Compound	[Fe(CO) ₂ ('CO ₂ Me-S ₄ ')] ($\underline{4a}$)	'CO ₂ Me-S ₄ '-H ₂ (5)	$(AsPh_4)_2[Fe('CO_2Me-S_2')_2]$ (11)
Formula	$C_{20}H_{16}FeO_6S_4$	C ₁₈ H ₁₈ O ₄ S ₄	C ₆₄ H ₅₂ As ₂ FeO ₄ S ₄
$M_r[g/mol]$	536.4	426.6	1218.99
Crystal size. [mm]	$0.7 \times 0.5 \times 0.4$	$0.4 \times 0.4 \times 0.3$	$0.7 \times 0.6 \times 0.5$
F (000)	1096	888	1248
Crystal system	triclinic	monoclinic	monoclinic
Space group	<u>P</u> Ī	<u>C</u> 2/c	<u>P</u> 2 ₁ /c
<u>a</u> [pm]	784 .1(8)	1267.0(2)	1018.4(3)
<u>b</u> [pm]	1660.5(15)	1534.3(3)	1915.7(5)
<u>c</u> [pm]	1892.0(2)	999.9(2)	1392.4(4)
α[*]	113.58(8)	•	-
β[*]	98.17(8)	100.23(1)	97.58(2)
γ[*]	94.58(8)	-	-
Cell volume [pm ³]	2209(4)·106	1913.0(5)	2692.8(13)
Z	4	4	2
D _{calcd,} [g/cm ³]	1.613	1.481	1.503
μ [cm ⁻¹]	10. 96	5.18	17.05
Temperature [K]	200	200	200
Diffractometer	Siemens P4	Siemens P4	Siemens P4
Radiation [pm]	$Mo-K_{\alpha}$ (71.073)	$Mo-K_{\alpha}$ (71.073)	$Mo-K_{\alpha}$ (71.073)
Scan technique	ω-scan	ω-scan	ω-scan
2 θ - range [°]	3 – 54	3 – 54	3 – 54
Scan speed [*/min]	3 – 29.3	3 – 29.3	3 - 30
Measured reflections	10681	3609	10536
Independent reflections	9559	2101	5894
Observed reflections	6168	1321	4142
σ-Criterion	$F > 4\sigma(F)$	$F > 4\sigma(F)$	$F > 4\sigma(F)$
Refined parameters	559	128	340
R/R _W bzw. R _W ²	0.054/0.049	0.045/0.042	0.0316/0.0767

solution with n-hexane, and black needles of (AsPh₄)₂[Fe('CO₂Me-S2')2] (11) were obtained by layering a solution of Li2[Fe('CO2Me-S₂')₂] in MeOH/THF (3:1) with a solution of AsPh₄Cl · H₂O in MeOH.

Suitable single crystals were sealed in glass capillaries and data were collected with a Siemens P4 diffractometer. The structures were solved by direct methods (SHELXTL-PLUS)[36]. Nonhydrogen atoms were refined anisotropically, and hydrogen atoms with isotropic thermal parameters. In the case of (AsPh₄)₂[Fe('CO₂Me- $S_2')_2$ (11), the anisotropic refinement was carried out with SHELXL93^[37]. The hydrogen atoms were located in the difference Fourier synthesis and restricted during refinement.

The C₂H₄ bridge in 'CO₂Me-S₄'-H₂ (5) was disordered and was refined in two different positions with the occupation factors of 47(1) and 53(1)%. The hydrogen atoms of the C₂H₄ unit were not located. Selected crystallographic data are listed in Table 1^[38].

1244-1245; Angew. Chem. Int. Ed. Engl. 1989, 28, 1271-1272. [7] D. Sellmann, H. Friedrich, F. Knoch, M. Moll, Z. Naturforsch., Teil B 1994, 49b, 76-88.

^[1] B. K. Burgess in Molybdenum Enzymes, Cofactors, and Model Systems, (Eds.: E. I. Stiefel, D. Coucouvanis, W. E. Newton), American Chemical Society, Washington, DC, 1993, pp. 144 - 170.

R. R. Eady in Perspectives on Bioinorganic Chemistry (Eds.: R. W. Hay, J. R. Dilworth, K. B. Nolan), JAI Press, London, 1991, p. 225 - 284

pp. 223-264.

[3] J. R. Chisnell, R. Premakumar, P. E. Bishop, J. Bacteriol. 1988,

^[4] R. R. Eady, Adv. Inorg. Chem. 1991, 36, 77-102.
[5] [5a] M. M. Georgiadis, H. Komiya, P. Chakrabarti, D. Woo, J.

J. Kornuc, D. C. Rees, *Science* **1992**, 257, 1653–1659. – [5b] J. Kim, D. C. Rees, *ibid.*, 1677–1682. [6] [6a] D. Sellmann, W. Soglowck, F. Knoch, G. Ritter, J. Dengler, *Inorg. Chem.* **1992**, 31, 3711–3717. – [6b] D. Sellmann, W. Soglowck, F. Knoch, M. Moll, *Angew. Chem.* **1989**, 101,

 ^{[8] [8}a] G. Figuly, C. Loop, J. Martin, J. Am. Chem. Soc. 1989, 111, 654-658.
 [8b] E. Block, V. Eswarakrishnan, M. Gernon, G. Ofori-Okai, C. Saha, K. Tang, J. Zubieta, ibid., 658-665. K. Smith, C. Lindsay, G. Pritchard, ibid., 665-669

E. Hahn and coworkers at the Free University of Berlin obtained 2,3-dimercaptobenzoic acid (1) containing small amounts of 2,3-dimercaptoterephthalic acid by a similar method. F. E. Hahn, W. W. Seidel, Angew. Chem. 1995, 107, 2938-2941; Angew. Chem. Int. Ed. Engl., in press.

^{[10] [10}a] D. Sellmann, H.-E. Jonk, H.-R. Pfeil, G. Scyerl, G. Huttner, J. Organomet. Chem. 1980, 191, 171–179. – [10b] D. Sellmann, U. Kleine-Kleffmann, *J. Organomet. Chem.* **1983**, 247, 307–320. – [10c] D. Sellmann, H. Kunstmann, F. Knoch, M. Moll, *Inorg. Chem.* **1988**, 27, 4183–4190. – [10d] D. Sellmann, S. Fünfgelder, F. Knoch, M. Moll, Z. Naturforsch., Teil B 1992, 47b, 51-60. - [10c] D. Sellmann, Th. Becker, Th. Hofmann, F. Knoch, M. Moll, Inorg. Chim. Acta 1994, 219, 75-84.

^[11] D. Sellmann, G. Freyberger, R. Eberlein, E. Böhlen, G. Huttner, L. Zsolnai, J. Organomet. Chem. 1987, 323, 21-35

^[12] D. Sellmann, E. Unger, Z. Naturforsch., Teil B 1979, 34b, 1096 - 1100.

^[13] D. Sellmann, E. Böhlen, Z. Naturforsch., Teil B 1982, 37b, 1026 - 1033

^[14] J. M. Fletcher, J. L. Jenkins, F. M. Lever, F. S. Martin, A. R. Powell, R. Todd, J. Inorg. Nucl. Chem. 1955, 1, 378-401

D. Sellmann, Ch. Rohm, M. Moll, F. Knoch, Z. Naturforsch. Teil B 1995, 50b, 1229-1244

^[16] M. A. F. Jalal, M. B. Hossain, D. van der Helm, J. Sanders-Loehr, L. A. Actis, J. H. Crosa, J. Am. Chem. Soc. 1989, 111, 292–296.

^{[17] [17}a] K. Itoh, H. J. Bernstein, Can. J. Chem. 1956, 34, 170-178. - [17b] S. D. Robinson, M. F. Uttley, *J. Chem. Soc. Dalton Trans.* 1973, 1912-1920. - [17c] G. B. Deacon, R. J. Philips, *Coord. Chem. Rev.* 1980, 33, 227-250. - [17d] T. A. Stephenson, G. Wilkinson, J. Inorg. Nucl. Chem. 1967, 29, 2122–2123.

[17e] G. Csontos, B. Heil, C. Markó, *J. Organometal. Chem.* **1972**, 37, 183–185. – [17f] M. Appel, K. Schloter, J. Heidrich, W. Beck, *J. Organomet. Chem.* **1987**, 322, 77–88.

[18] [18a] D. Sellmann, E. Böhlen, M. Waeber, G. Huttner, L. Zsolnai, Angew. Chem. **1985**, 97, 984–985; Angew. Chem. Int. Ed. Engl. **1985**, 24, 981–982. — [18b] D. Sellmann, M. Waeber, Z. Naturforsch., Teil B **1986**, 41b, 877–884. — [18e] D. Sellmann, P. Lechner, F. Knoch, M. Moll, Angew. Chem. 1991, 103, 599-601; Angew. Chem. Int. Ed. Engl. 1991, 30, 552-554. – [18d] D. Sellmann, P. Lechner, F. Knoch, M. Moll, J. Am. Chem. Soc. 1992, 114, 922-930. - [18e] D. Sellmann, T. Gottschalk, F. Knoch, unpublished results.

[19] P. S. Pregosin, R. W. Kunz, ³¹P and ¹³C NMR of Transition

Phosphine Complexes, Springer-Verlag, Berlin, 1979, pp. 65-74. [20] [20a] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 3rd cd., Thieme Verlag Stuttgart, 1987, pp. 116, 153; [20b] H.-O. Kalinowski, St. Berger, S. Braun, ¹³C-NMR-Spektroskopie, Thieme Verlag, Stuttgart, 1984, pp. 284 - 308

[21] D. Sellmann, G. Binker, Z. Naturforsch., Teil B 1987, 42b, 341 - 347.

[22] D. Sellmann, R. Ruf, F. Knoch, M. Moll, Z. Naturforsch., Teil B 1995, 50b, 791-801.

 [23] [23a] J. March, Advanced Organic Chemistry 4th ed., Wiley, New York, 1992, p. 21. — [23b] S. Oae, J. T. Doi, Organic sulfur compounds: Structure and Mechanism, CRC Press, Boca Raton, 1991, pp. 2-9.

[24] [24a] L. Pauling, *Die Natur der chemischen Bindung*, VCH, Weinheim, **1973**, p. 249. – [24b] A. Bondi, *J. Phys. Chem.* **1964**, *68*, 441–451.

68, 441-451.
[25] R. T. Sanderson, J. Am. Chem. Soc. 1983, 105, 2259-2261.
[26] [26a] D. Sellmann, G. Binker, M. Moll, E. Herdtweck, J. Organomet. Chem. 1987, 327, 403-418. - [26b] D. Sellmann, G. Lanzrath, G. Huttner, L. Zsolnai, C. Krüger, K. H. Claus, Z. Naturforsch., Teil B 1983, 38b, 961-981.

[27] D. Sellmann, R. Weiss, F. Knoch, G. Ritter, J. Dengler, Inorg. Chem. 1990, 29, 4107-4114.

D. Sellmann, U. Kleine-Kleffmann, L. Zapf, G. Huttner, L. Zsolnai, J. Organomet. Chem. 1984, 263, 321-331.

[29] D. Sellmann, M. Geck, F. Knoch, G. Ritter, J. Dengler, J. Am. Chem. Soc. 1991, 113, 3819-3828.
 [30] [30a] D. Coucouvanis, D. Swenson, N. C. Baenziger, C. Murphy,

D. G. Holah, N. Sfarnas, A. Simopoulos, A. Kostikas, *J. Am. Chem. Soc.* **1981**, *103*, 3350-3362. – [30b] D. Coucouvanis, D. Swenson, N. C. Baenziger, D. G. Holah, A. Kostikas, A. Simopoulos, V. Petrouleas, J. Am. Chem. Soc. 1976, 98, 5721-5723. - [30e] R. W. Lane, J. A. Ibers, R. B. Frankel, G. C. Papaefthymiou, R. H. Holm, J. Am. Chem. Soc. 1977, 99, 84-98.
 [31] [31a] B. S. Kang, L. H. Weng, D. X. Wu, F. Wang, Z. Guo, L.

R. Huang, Z. Y. Huang, H. Q. Liu, *Inorg. Chem.* **1988**, 27, 1128–1130. – [^{316]} R. Weiß, Ph. D. Thesis, University of Erlangen-Nürnberg **1990**. – [^{31e]} W. C. Hamilton, I. Bernal, *Inorg. Chem.* **1967**, 6, 2003–2008. – [^{31d]} M. J. Baker-Hawkes, Z. Dori, R. Eisenberg, H. B. Gray, J. Am. Chem. Soc. 1968, 90, 4253–4259. – [^{31e]} K. W. Browall, T. Bursh, L. V. Interrante, J. S. Kasper, Inorg. Chem. 1972, 11, 1800–1806. – [^{31f]} K. W. Browall, L. V. Interrante, J. Coord. Chem. 1973, 3, 27–38. – [318] K. W. Browall, L. V. Interrante, J. S. Kasper, *J. Am. Chem. Soc.* 1971, 93, 6289–6290. – [31h] R. Williams, E. Billig, J. H. Waters, H. B. Gray, J. Am. Chem. Soc. 1966, 88, 43-50. (31i) H. B. Gray, E. Billig, J. H. Waters, *J. Am. Chem. Soc.* **1963**, 85, 2019–2021. – (31j) G. Henkel, K. Greiwe, B. Krebs, *Angew*. Chem. 1985, 97, 113-115; Angew. Chem. Int. Ed. Engl. 1985, *24*, 117–119́.

[32] P. Kalck, F. Monteil, Adv. Organomet. Chem. 1992, 34, 219 - 284.

[33] W. A. Herrmann, C. W. Kohlpainter, R. B. Manetsberger, H. Bahrmann, H. Kottmann, J. Mol. Catal. 1995, 97, 65-72.

[34] J. Degani, R. Fochi, Synthesis 1976, 7, 471-472.

[35] T. A. Stephenson, G. Wilkinson, J. Inorg. Nucl. Chem. 1966, 28, 945-956.

[36] G. M. Sheldrick, SHELXTL PLUS for Siemens Crystallo-graphic Research Systems, Release 4 21/V, Copyright 1990 by Siemens Analytical X-Ray Instruments Inc., Madison, WI.

[37] G. M. Sheldrick, SHELXL93, Program for Crystal Structure Determinations, University of Göttingen, 1993.

[38] Further details of the X-ray structure analyses are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD 404293 [Fe(CO)₂('CO₂Me-S₄')], CSD 404294 'CO₂Me-S₄'-H₂, CSD 404292 (AsPh₄)₂[Fe('CO₂Me-S₂')₂], the names of the authors, and the journal citation.

[96008]